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Abstract: Generalizing the conceptual approach to a theory of biosemiotics which is primarily based on insight from 

mathematical topology1, we discuss here the relevance of the cognitive representation of the category of space in terms of 

the consequences implied by topos theory: In this sense, it is shown that a topos is a Lindenbaum-Tarski algebra for a 

logical theory whose models are the points of a space. We also show what kind of epistemic conclusions can be drawn from 

this result with a view to model theory and by doing so establish important relationships among the concepts of social 

space, networks, systems and evolutionary games on the one hand and semiosis on the other. We can thus achieve a 

suitable reconciliation of both the onto-epistemic approach of the Kassel group and the evolutionary approach of the 

Salzburg group, respectively, carrying us forward among other things to fundamental aspects of a unified theory of 

information. This first paper deals with the mentioned relationships in general spaces, the second2 deals with applications to 

virtual space proper. 
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 

n his forword to Marcello Barbieri’s book3 

Michael Ghiselin points to the process of 
reconstructing a structure from incomplete 

information as being one of the most 
prominent components of epigenesis which 

Barbieri visualizes as the property of a system 
to increase its own complexity.4 In fact, 

Barbieri takes this capacity as a defining 
property of life itself. And it is accompanied by 
the properties of attaining both organic 

memories and organic codes. In fact, as it 
turns out, this approach is not far from what 

the Santa Fe school has put forward in the 
view of defining evolution in terms of an 
intrinsic unfolding of complexity by systems 

which tend to optimize their field of 
possibilities.5 Indeed, Kauffman actually 

introduces what he calls a “fourth law” of 
thermodynamics in order to couple evolution 
with the practical acquiring of complexity.6 But 

in order to phrase concepts like “complexity” 
and “emergence” in a manner which is 

sufficiently invariant, it is necessary to develop 
a new approach by means of a language 
which is both formal enough so as to cover 

the logic nucleus of the processes involved 
(which have their roots in processes usually 

described within the sciences) and also 
hermeneutic in the sense that its syntax 

                                                      
3 Marcello Barbieri: The Organic Codes. An 

Introduction to Semantic Biology. Cambridge University 
Press, 2003. (The first referee would like to have also 
mentioned here D. R. Brooks, E. O. Wiley: Evolution of 
Entropy, University of Chicago Press, 1988, as well as D. 
Layzer: Cosmogenesis, Harvard University Press, 1990. 
He argues that these authors were well ahead of 
Kauffman. We do not challenge this position, but then, 
obviously, Lee Smolin: The Life of the Cosmos, Oxford 
University Press, 1997, is certainly ahead of them.)  

4 Ibd., x. 
5 Cf. Stuart Kauffman: Investigations. The Nature of 

Autonomous Agents and the Worlds They Mutually 
Create. Oxford University Press, 2000. 

6 The formulation is essentially: Evolution is such that 
developmental steps from a given state take place in the 
adjacent possible of this state. The adjacent possible is 
the set of possible states of a system which has exactly 
one reaction step distance from that state. Hence, this 
certifies that the field of possibilities is always larger than 
the field of actualities, and that evolution is based on local 
interactions. 

serves the purpose of illuminating its 

semantics (as it is usually described in 
philosophy). A useful and promising approach 
has been introduced recently by Neumann 

and Nave which will be the topic of section 2. 
As it turns out, it is the language of 

mathematical categories that seems 

appropriate to cover the aforementioned 
tasks. As one of us has shown at another 

place7, a topological view which generically 
relates to the modern theory of systems is 

equally promising when trying to phrase the 
problems involved here. 

On the other hand, somewhat earlier, it is 
Walter Fontana – a Santa Fe protagonist 

himself – who has shown how to approach an 
explicit convergence of various theories when 
describing chemical and biological structures 

within the framework of what he calls 
alchemy: The idea is that chemical molecules 

can be visualized as symbolic representations 
of operators which act upon chemical 

substances.8 Insofar there is a structural 
similarity between a “chemical calculus” and 
the programming language LISP. This 

similarity motivates Fontana’s “alchemy”: An 
operator Op = f  is defined then by its action 

on relevant variables x, y, …: f(x, y, …). The 

result is the action’s evaluation at the location 
(x, y, …). This viewpoint implies a 

correspondence table which couples the 
operator action of molecules to logic: 

 

                                                      
7 Cf. note 3 above. 
8 Walter Fontana: Algorithmic Chemistry. In: 

C.G.Langton et al. (eds.), Artificial Life II, MIT Press, 
Boston, 1991. 
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Physical molecule Symbolical 
representation of an 
operator 

Molecule behaviour Action of the 

operator 

Chemical reaction Evaluation of a 
functional term 

Chemical properties of 
binding 

Algebraic properties 
of connectives 

Location of the 

reaction 

Proposition  

Stable molecule Cut-free proof of the 
proposition 

Complementarity  Negation  

Reaction Proof with Cut 
between proposition 

and negation 

 

We see easily how concepts of the logical 

calculi of propositions and predicates enter 
the picture without leaving the framework of 

chemical reactions. The operator notation can 
be reproduced straightforwardly by means of 
the language LISP, because there the 

standard form of a command is the 
expression (op x y) where empty input is 

significant now. Operators can be defined 
then by the command (define (op name x) (op 
x y)). And the crucial power of LISP lies in the 

aspect of self-recursion which admits 
procedures that can call on themselves. 

Hence, the natural logic associated with LISP 
is the Lambda calculus.9 

Note however that at the same time the 
same molecular situations represent 

observable properties of concrete objects that 
humans can handle in their everyday life. In 
other words: The concrete structure of 

observable nature shows up as a pragmatic 
materialization of a logical language model. 

Hence, consistent research turns out to be the 
process of performing self-consistent 

                                                      
9 This calculus has been utilized recently by Louis 

Kauffman within the field of theoretical physics, 
associated with results taken from knot theory. This 
approach has already established a deep and direct 
relationship between the fundamental aspects of physics 
and biology in terms of DNA replication. See for details 
e.g. Luciano Boi (ed.), Geometries of Nature, Living 
Systems, and Human Cognition. World Scientific, 
Singapore etc., 2005. 

conventions of logical language models. The 
actual world (in the cognitive sense) is 

isomorphic to the world of functions as 
expressed in terms of operators which are at 
their base nothing but propositions. 

Essentially, this constitutes some sort of 
constructive feedback loop which defines a 

calculus of objects. The concept of operators 
serves as the causal connection between the 
internal structure of an object and the actions 

by which this same object takes part in the 
construction of other objects. Hence, there is 
a space of possible objects, and the 

organization of this space shows up 
algebraically as a network of mutually 

mediated paths of production. And here lies 
the relationship to mathematical topology: 

This is so because observable forms of 
objects (shapes) in the usual space of 
perception are the phenotypes of biology. 

They are points in a space of shapes. Spaces 
of this latter type can be treated in terms of 

topology, because they admit consistent 
criteria of “nearness”. In other words: 

Evolution is determined chiefly by the 
accessibility of points in shape space.10 (Note 
that this is also true – if adequately adapting 

the terminology – for computer programmes, 
electronic flow diagrams, urban systems of 

transport, companies in a given industry and 
so forth – in short, we talk of percolation 
problems, and what percolates is always 

some form of information.) 

So after all, the algebraic description is 
complemented by the topological description, 

because the nearness of some shape β to 

another shape α correlates with the probability 

of a transition from α to β: given the fraction of 
the boundary which is common to both sets of 

genotypes of β und α with respect to the total 

boundary of set α. Hence, S(α) is the set of all 
(coded) sequences which fold themselves in 

α. And ∂S(α) is that boundary which can be 
                                                      
10 The first referee prefers to visualize the role of 

shape space as a constraint on evolution rather than 
something which chiefly determines the latter. Note 
however that in this present passage we use the wording 
in a somewhat generalized sense, because on the one 
hand, we do refer to general (unspecific) molecular 
situations, not necessarily to genes only, and on the other 
hand, we would not like to imply any injective 
relationships between genotype and phenotype, 
respectively. 
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attained by means of one-point mutations of 

the sequences in S(α). For any two α, β the 

expression S(β) ∩ ∂S(α) describes all those 

sequences which fold in β and are neighbors 

of those sequences which fold in α. Hence, 

the accessibility of β from α is thus given by 

A(βα):= S(β) ∩ ∂S(α) / ∂S(α) . 
Very much on this line of argument will we 

actually try here to tackle the problems 
described in the abstract. In the next section 2 

we introduce topos theory. In section 3 we 
utilize the theory for drawing useful 
interpretations about the spatial nature of 

topoi. In section 4 we will collect some of the 
important consequences with a view to social 

space. Finally, in section 5 we will give a short 
appendix for displaying some elementary 
definitions. Of course, we are far from fixed 

conclusions, let alone from possessing a 
clear-cut theory. Hence, the approach 

indicated here is some kind of outline for an 
ongoing research programme rather than a 
lecture on established results. But we note 

that in the meantime, several groups on an 
international scale have begun to deal with 

similar ideas and approaches. We are thus, 
as we feel, on the safe side of a mouvement 
which is slowly tending towards a conceptual 

convergence in these matters. 

 

In a recent work of theirs, Neuman and 
Nave11 can demonstrate the relevance of 

(mathematical) categories for cognitively 
generated concept formation giving concrete 

examples from child development. Insofar 
they follow the essential line of argument as 
given by the late Piaget.12 The basic idea is to 

represent the concept construction by means 
of pushout and pullback diagrams known from 

category theory: 

Take A, B, C as individual cases of some 

concept D* which is represented by the sign D 
playing in turn the role of denotating the 

                                                      
11 Yair Neuman, Ophir Nave: A Mathematical Theory 

of Sign-Mediated Concept Formation. (preprint 2007) 
12 Jean Piaget et al.: Morphisms and Categories. 

Comparing and Transforming. Terence Brown (ed.), 
Earlbaum, Hillsdale (N.J.), 1992. – See in particular Gil 
Henriques: Morphisms and Transformations in the 
Construction of Invariants. In: id., op.cit., 183-206 (ch. 
13).  

respective cases as their associated name. 
Then the pushout is defined by a diagram of 

the following form: 

 

                        D*                

             D    B 

                                      

             C    A 

 

where upward pointing arrows indicate 
mappings to D*. In this sense, A is the domain 

of B and C which are in turn the co-domains 

of A. The mappings A  B und A  C are 

similarity indicators (identifyers) for the cases 
according to which case A can be consistently 

classified in order to associate it to a suitable 
underlying concept. Hence, this relation is a 
sort of equivalence relation. On the other 

hand, the mappings B  D and C  D 
associate the cases with names (they denote 
them). Then the pushout is given by the 

mapping u: D  D* which associates names 
with their appropriate concept such that the 

square diagram as part of the complete 
diagram commutes with u and the 

accompanying mappings of the upper left-
hand cone. (The pullback then is the dual 

diagram which can be generated by simply 

reversing all directions of arrows.) The 
important point is that only both diagrams 

together can mediate case A with the concept 

D* in question such that it can be properly 
understood. In other words: The pushout 

refers to the conceptual reconstruction 
according to the bottom up method, while the 

pullback refers instead to the conceptual 
reconstruction according to the top down 
method. 

If we utilize the main example given by 

Neuman and Nave, we see immediately how 
to apply pushout and pullback diagrams in 
practise: Choose the name Dog and the 

associated concept Dog*. Take as individual 
cases C = Chihuahua, B = Great Dane, A = 

German Sheperd. Test then A according to 

whether it can consistently fall as individual 
case under the name Dog. Obviously, the 

idea is to look for a similarity criterion in the 
first place: If A can be shown to be sufficiently 

similar to B and C, then it falls under D and is 
thus mediated with the concept D*. The flow 

of information goes from A to B and C. If both 
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pushout and pullback exist, we can formulate 
the result of a deductive algorithm: If case B is 

similar to case A and if case C is similar to A, 
then B is similar to C. We notice that the 

macrolevel (of concepts) and the microlevel 

(of cases) of reflexion determine each other in 
a mutual and circular manner. (Hence, the 

syntactic as well as semantic dynamics of 
language reproduces the dynamics of self-
organizing systems.) Note that propositions of 

the type if x ∪ if y, then z conform with lines of 

a computer program. In other words: The 

representation chosen here illustrates the 
close relationship between categories and the 
processing of information (computation).13 

In fact, Neuman and Nave can show that 

this dual method of cognition determines the 
concept formation of humans while in the rest 
of the animal kingdom the usual method of 

association and diagonalization turns out to 
be comparatively uneconomical, because the 

number of possibilities of conceptual 
mediations does not only increase 
exponentially and complexity thus becomes 

difficult to handle very quickly, but the whole 
system becomes also very insensitive with 

respect to a possible change of actual 
contexts. And more than that: The human way 
can be additionally extended by means of 
metaphorization such that polysemy and 

degeneration add to strategic flexibility. 
Deduction is then replaced by abductive 
inference. 

Neuman and Nave give the example of 
calling a child’s aunt A “dog” in metaphorical 

terms. Then the original diagram takes now 
the form: 

 

                        D**               

             D    B 

                                       

              C    A 

 

where aunt A is being compared with 
(similar) aunts B and C. However, as the 
context is shifted now, metaphorization is a 

mapping of the type D*  D** such that 
                                                      
13 See also Andreas Blass: Topoi & Computation. 

(preprint from the website) In this paper the author 
constructs the exact parallel by utilizing geometric 
morphisms which correspond to generalized continuous 
functions. 

commutation properties stay preserved. This 
is equally true, if in a more complex case the 

name D (Dog) is replaced by D’ (Hot Dog). 
Then the diagram must be changed, if 
applying to dogs in general: 

 

                        D**               

              D’    B 

                                       

                  C    A  . 

 

Now A means „Dachshound“ e.g., and C 
„Chihuahua“. But B is now “sausage”. Hence, 

if D’ is Hot Dog, then D* is “sausage*”. And 
instead of utilizing similarity mappings as 

identifyers (“is like” and “is a” as above), a 
negation shows up now (is not like) in the 
diagram, if looking particularly at the mapping 

D  C. And note the reversal of the arrows 
directions. Hence, the diagrams represent 

constraints which act onto the possible 
interpretations of signs. (And the process of 
concept formation can thus create dynamical 

ontologies which are context-depending.14) 
Hence, we have a close relationship between 

semiosis by means of cognition and 
communication on the one hand, and logic on 
the other.15 

We can generalize now this promising 

approach by demonstrating in which sense 
pushout and pullback diagrams as introduced 

                                                      
14 Note that this does not establish a contradiction to 

the point of the second referee who visualizes concept 
formation as context-depending per se (and we agree). In 
this sense, he would also prefer to signify both cognition 
and communication as conceptual, and we agree again. 
However, we would not visualize the prime ontological 
tension between „conceptual“ and „real“, as he does, but 
instead between „conceptual“ and „modal“. This is mainly 
so, because we start from the essentially Spinozist idea 
that humans are subjected to what they can observe 
which is thus nothing but the world modaliter (falling into 
their mode of being). And this is what they actually 
conceptualize when building theories. While the world 
realiter is not accessible to them in principle. Hence, we 
would challenge the ontological state of what can be 
observed. And this has a practical consequence for a 
meaning which is possibly built into biotic information in 
the first place. However, the authors of this paper have 
not yet reached a final conclusion on this latter problem 
which is prominent in the work of Barbieri as quoted 
above. 

15 Cf. more recently John C. Baez, Mike Stay (2008): 
Physics, Topology, Logic and Computation: A Rosetta 
Stone. From the Baez web page: 
http://math.ucr.edu/home/baez/ . 
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by Neuman and Nave into the semiological 
discussion of concept formation make it 
possible to define a topos.16 Among other, 

equivalent definitions, for us important here is 
the following definition which asserts that a 

topos is a category with terminal object and 
pullbacks, with initial object and pushouts, 

with exponentials, and with a subobject 
classifyer.17 Note that the first two conditions 

are clearly demonstrated using the diagrams 

introduced earlier. Case A of the respective 
name is an initial object of a category in the 

first version of the diagrams and a terminal 
object in the second version. 

So what we are talking about here is a 
category of denotators whose objects are the 

names of type D and whose morphisms are 
the identifyers (of two types: by denotating of 
the form “is a” and by metaphorizing of the 

form “is like”). The various names of individual 
cases are subobjects of the category. 

Mappings of the type D  D* and D*  D**, 
respectively, are functors between categories. 
(Hence, we differ between the category of 

denotators and the category of concepts. And 
we differ between contexts such that the 

respective category of concepts is different 
from the one originally associated with the 
denotators. The first type of functor represents 
deduction (or induction as to that) while the 
second type represents creative abduction.) 

                                                      
16 We follow here the presentations of the topic in 

various works of standard literature: See e.g. Robert 
Goldblatt: Topoi. The Categorial Analysis of Logic. North 
Holland, London, 1984. and with respect to special 
perspectives chosen when introducing topoi: J. L. Bell: 
Toposes and Local Set Theories. Clarendon Press, 
Oxford, 1988. – J. Lambek, P.J.Scott: Introduction to 
Higher Order Categorical Logic. Cambridge University 
Press, 1986. Also very important: Saunders MacLane, 
Ieke Moerdijk: Sheaves in Geometry and Logic: A First 
Introduction to Topos Theory. Springer, London, 1992. – 
P. T. Johnstone: Topos Theory. Academic Press, London 
etc., 1977. – And more recently id.: Sketches of an 
Elephant: A Topos Theory Compendium. 2 vols. Oxford 
Science Publications, 2002-2003. – It is noteworthy to fix 
the terminology chosen by means of the general 
introduction by Saunders MacLane: Categories for the 
Working Mathematician. Springer, New York, Berlin, 
Heidelberg, 1971. as well as with countless generalizing 
ideas by Peter J. Freyd, Andre Scedrov: Categories, 
Allegories. North Holland, Amsterdam, 1990. 

17 See also the short summary of details in the 
appendix to this present paper. 

A subobject classifyer is essentially a 

generalized set of truth values Ω such that the 
diagram of the form 

 

                         D                

              A    C 

                                       

               1    Ω   

 

is a pullback. This time D is the denotator 
(name), A and C are two individual cases, and 

the mapping 1  Ω is a monic “true”. (A 
monic is the categorial equivalent of a 

monomorphism which is an injective 

homomorphism.) The mapping C  Ω is 
called characteristic arrow. We can visualize 

what the subobject classifyer is actually doing 
by thinking of selecting those arrows which 
“come through” to the “truth” because they 

imply mutually compatible interpretations of 
names.18 Hence, we call the category of 

denotators utilized in the manner shown 
above Neuman-Nave topos (NN topos). In the 

following we will have a look at the 

interpretational consequences of this topos. 

 

The important point is that a topos turns out 
to be a Lindenbaum-Tarski algebra for a 

logical theory whose models are the points of 
a space.19 In other words, we can identify an 

appropriate space with a logical theory such 
that its points are the models of this theory, its 
open sets the propositional formulae, the 

sheafs the predicate formulae, and the 
continuous maps the transformations of 

models. At this point logic connects with 
model theory: Essentially, a Lindenbaum-
Tarski algebra A of a logical theory T consists 

of the equivalence classes of propositions p of 

the theory under the relation ≅ defined by p ≅ 

q when p and q are logically equivalent in T. 
                                                      
18 This also clarifies the meaning of the subobjects 

themselves: Basically, a subobject of a C-object in a 
category C is thus a monic C-arrow with codomain in the 
target object. This is so because the domain of a monic is 
isomorphic to a subset of the codomain. And this also 
introduces exponentials which are simply all morphisms 
from a domain to a codomain of an object. 

19 We follow here the terminology of Steven Vickers: 
Locales and toposes as spaces. (preprint, Birmingham, 
2004).  
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That is, in T proposition q can be deduced 
from p and viceversa. Operations in A are 

inherited from those available in T, typically 
conjunction and disjunction. When negation is 
also present, then A is Boolean, provided the 

logic is classical. Conversely, for every 
Boolean algebra A, there is a theory T of 

classical propositional logic such that the 
Lindenbaum-Tarski algebra of T is isomorphic 
to A. In the case of intuitionistic logic, the 

Lindenbaum-Tarski algebras are Heyting 
algebras. (Hence, we deal here with an 

algebra of logical propositions in which 
logically equivalent formulations of the same 
proposition are not differentiated.) 

We recognize immediately that it is model 

theory which relates representation with 
interpretation. (And this is what the diagrams 
discussed above are all about.) In other 

words: Model theory is the mathematical 
discipline that checks semantic elements of 

structures by means of syntactic elements in a 
given language. The latter can have logical as 
well as non-logical symbols and grammatical 

rules, but in principle, it is always the 
explication of a logical theory. Is L such a 

language, and M some set, then M becomes 
an L-structure by means of the interpretation 
of each of the non-logical symbols in L. Each 

proposition which is formulated according to 
the rules gains some meaning in M. Hence, 

representation entails interpretation and 
viceversa. 

It is not the proper place here to enter 
deeply into the discussion of model theory.20 

But what we can already notice is the 
relevance of the spatial approach to topoi: We 

recall from philosophical epistemology that 
essentially, a theory is a set of propositions 

which satisfy certain rules. If we visualize the 

theory as an abstract space, then the points of 
this space are subsets of propositions. Hence, 

generalized (abstract) spaces (not only within 
the field of mathematics) are nothing but sets 
of propositions or subsets of languages. 

Obviously, the languages serve the purpose 
of drafting out a picture of the world so as to 

orient oneself within its complex network of 
social and non-social interactions. 

                                                      
20 For a useful survey refer to Wilfrid Hodges: A 

shorter model theory. Cambridge University Press, 1997.  

This aspect is directly projected onto a 
plane representing an abstract space of 

reflexive operations in the case of what we 
call glass bead game.21 The projection takes 

place here on a two-dimensional plane which 

is represented in terms of vertices and edges 
of a network, where the vertices are points 

which represent propositions and the edges 
are logical connectives of these propositions. 
In principle, this is a graphical representation 

which maps nicely what the topos concept 
means when referring to its spatial aspect. 

The glass bead game consists of sequences 
of points being consistently connected by 
appropriate edges such that the resulting path 

within the network of propositions is the 
picture of a research process which mirrors 

the model building common in the sciences. 
(The idea is taken indeed from the well-known 
novel of Hermann Hesse’s.) Hence, the glass 

bead game essentially maps a section of 
social space (namely its scientific section laid 

down in scientific scripture). And by doing so it 
illustrates that this space is intrinsically 

dynamical, because it is actually constituted 
by the processing of the sequences of 
propositions according to given rules. In other 

words: We deal here with the processing of 
information (including its organization and 

interpretation). This conception is well 
compatible with Lorenzer’s theory of 
“language games” stressing the importance of 

predicators for the explicit training of social 
interactions in daily life.22 

One aspect is still missing which is the 
concrete multi-perspectivity of social space. 

This is in fact dealt with in detail in the work of 
Mazzola in order to take the various 

perspectives into account which determine the 
modes of interpretation of given works of 
music. But this aspect is equally important for 

                                                      
21 Cf. Rainer E. Zimmermann: The Modeling of Nature as 
a Glass Bead Game. In: Eeva Martikainen (ed.), 
Conference Human Approaches to the Universe. An 
Interdisciplinary Perspective. Helsinki. Agricola Society, 
2005, 43-65. More details recently in id.: Was heißt und 
zu welchem Ende studiert man Design Science? (vol. 1 of 
Muenchener Schriften zur Design Science), Shaker, 
Aachen, 2007. 

22 Cf. Alfred Lorenzer: Sprachspiel und 
Interaktionsformen. Suhrkamp, Frankfurt/M., 1977. as 
well as id.: Sprachzerstoerung und Rekonstruktion. 
Suhrkamp, Frankfurt/M., 1970. – Originally, Lorenzer 
looked for a theoretical combination of Wittgenstein’s and 
Freud’s approaches. 
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social spaces in general. And as it turns out, it 
can also be included in the terminology of 

topos theory. This can be shown in terms of 
what is called “Yoneda lemma”: 

For an arbitrary pre-sheaf P in C there is a 
bijection between natural transformations y(C) 

 P and elements of the set P(C) of the form: 

 

θ: HomC (y(C), P) ≈ P(C). 

 

Here C is the category of all pre-sheaves of 

C, where C is a fixed small category and Copp 
is its opposite. The objects of C are the 

functors Copp  Sets, and the arrows 
(morphisms) are all natural transformations 
between them. Each object c of C gives rise 

to a pre-sheaf y(c) on C defined on an object 
D of C by y(C)(D) := HomC (D, C) and on a 

morphism α: D’  D by y(C)(α): HomC (D, C) 
 HomC (D’, C). Pre-sheaves of this form are 
called representable, and in this case y is 

called an Yoneda embedding which is a 

special case of the lemma quoted above. 

For Mazzola, what the Yoneda lemma 
clarifies, is that it serves as a foundation of 

multi-perspectivity among local 
interpretations: In music, let R and S be 

appropriate vector spaces, and let K in R and 
L in S be two local compositions.23 The 
relations then between the two compositions 

can be expressed as a morphism K  L. 
Essentially, this morphism defines a 

perspective under which L can be seen. (In 
fact, we can construct similar pushout and 
pullback diagrams as shown in the case of the 

NN topos.) The Yoneda lemma certifies then 
that the system of all L-perspectives 

determines the isomorphy class of L. In other 
words: The morphisms can be visualized as 
essentially hermeneutic instruments in order 

to classify and understand local compositions. 
It is quite straightforward then to generalize 

this aspect to more “unspecialized” cases as 
instances of social space. The important point 
is that most of the time we do not talk here 

                                                      
23 We refer here to an earlier paper of Mazzola’s: 

Topologien gestalteter Motive in Kompositionen. (reprint 
from the website, 1997) The complete outline of 
Mazzola’s approach is given in the monumental book id.: 
The Topos of Music. Geometric Logic of Concepts, 
Theory, and Performance. Birkhaeuser, Basel, Boston, 
Berlin, 2002. 

about a space as it is actually observed, but 
instead about a space as it could be 

observed. In other words: The number of 

possible interpretations is larger than the 
number of actual interpretations. (Remember 

that in common social space collections of 
these interpretations form the practical “world-

view”.) Hence, not only does space show up 
as social space in the first place, and not only 
does social space show up as a space whose 

points are propositions of logical theories, but 
moreover social space shows up as well as a 
virtual space. Strictly speaking then, social 
space is a special case of virtual space, and 

not viceversa, because the latter’s “virtuality” 

refers to the field of possibilities rather than to 
the field of actualities which can be empirically 

observed.24 

 

What we see now is that traditionally, there 
have been already many connections 

between the human techniques of spatial 
representation (what has been called 
anthropological graphism elsewhere25) and 

the mapping of processes in terms of logical 
formulae. The approach of Fontana is one 

example, very much on the line of the Santa 
                                                      
24 As the second referee correctly states, virtual space 

is an extremely rich and complex concept. But note that, 
in principle, it is identical with what we might call reality, 
while social space, in so far it is observable, is modality 
instead. In fact, as far as it goes, communication in terms 
of language is concrete rather than abstract, though ist 
interpretations are abstract rather than concrete, but can 
unfold concrete actions undertaken. Hence, the second 
referee’s objections as to the fact that this paper, by 
having been shown how humans construct spatial 
representations by editing propositions of theories, covers 
only half the story of social space, are still topical in the 
ongoing discussions. The authors thank this referee for 
the stimulating input. 

25 Rainer E. Zimmermann: Graphismus & 
Repräsentation. Zu einer poetischen Logik von Raum und 
Zeit. Magenta, München, 2004. – The idea goes back to a 
formulation of Henri Lefebvre: The Production of Space, 
Blackwell, Oxford, 1991 (1974), 33: “A conceptual triad 
has now emerged …: 1) spatial practice which embraces 
production and reproduction, and the particular locations 
and spatial sets characteristic of each social formation. … 
2) representations of space which are tied to the relations 
of production …, hence to knowledge, signs, codes … 3) 
representational spaces embodying complex symbolisms 
… linked to the clandestine side of social life …” Note that 
in this book the problem of space is posed for the first 
time in a sufficiently modern language. There are even a 
remarks on Hesse’s glass bead game (ibid., 24, 136).  
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Fe school on self-organized criticality. We 
have also seen that this kind of discussion 

visualizes processes in the general sense as 
percolation phenomena26, and what is being 
percolated is information then. And we have 

seen that it is topos theory that provides an 
appropriate language in order to deal with 

these aspects of spatial representation. More 
than that: A topos can be essentially 
interpreted as the algebraic expression of the 

fact that spaces utilized in human cognition 
are basically constituted by propositions of 

logical theories. On the other hand, the 
procedures of deduction and induction as well 
as creative abduction, available to human 

logic, can be rephrased in terms of algorithmic 
procedures. Hence, they are both accessible 

by means of programmes as they are utilized 
in computation, and by means of game 
theory, because on a fundamental level of 

reflexion games are essentially algorithmic 
procedures whose strategies are given by its 

rules.27 What we realize then is that all of this 
relates nicely with the approaches of the 

Kassel and Salzburg schools as described at 
earlier occasions.28 

Note that the conceptual nucleus of these 
approaches is given by two triadic 
arrangements of concepts of the form: 

 

Cognition Communication 
Co-

operation 

Space Network System 

 

The first triadic structure mirrors the close 

relationship between cognition and 
                                                      
26 Cf. Dietrich Stauffer, Amnon Aharony: Introduction 

to Percolation Theory. Taylor & Francis, London, 2nd ed., 
1994. 

27 Cf. Robin Houston: Categories of Games. Master 
thesis, University of Manchester, 2003. 

28 Cf. the volumes of collected essays presenting the 
results of the INTAS co-operation project “Human 
Systems in Transition” with the universities of Vienna, 
Kassel, Kyiv, and the Academy of Sciences, Moscow led 
by Wolfgang Hofkirchner (then Vienna, now Salzburg), 
namely by V. Arshinov, C. Fuchs (eds.): Causality, 
Emergence, Self-Organization (Volume 1), Russian 
Academy of Science, NIA-Priroda, Moscow, 2003. Also I. 
Dobronravova, W. Hofkirchner (eds.): Science of Self-
Organization and Self-Organization of Science (Volume 
2), Abris, Kyiv, 2004. And R. E. Zimmermann, V. Budanov 
(eds.): Towards Otherland. Languages of Science and 
Languages Beyond. Kassel University Press, 2005. 

communication on the one hand – as pair of 
concepts characterizing the process of 

reflexion – and co-operation on the other hand 
– as characterizing the transition from 
reflexion to action.29 While the first pair of 

concepts cannot be separated in practise, the 
latter concept is structurally separable from 

the other two. Reflexion and action represent 
thus two different time scales which show up 
with the systematic updating process involved 

in the sequential organization which is 
underlying both reflexion and action, 

respectively. The producing of models 
belongs to the pair of concepts in the first 
place and is primarily based on a generic self-

model which defines the framework according 
to which cognition is normalized. Essentially, 

this is the onto-epistemic picture of the 
grasping of the world by humans.30 Earlier 
stages of evolution can be visualized as 

conceptual approximations of this onto-
epistemic picture. In methodological terms the 

second triadic structure is associated with the 
first such that there are intrinsic pairwise 

correspondences between cognition and 
space, communication and network, and co-
operation and system, respectively. In other 

words: Space is the conceptual structure from 
which that world of daily life is being 

reconstructed which is derived from the 
process of cognition. Network is the 

                                                      
29 See for more details Rainer E. Zimmermann: 

Konzeptuelle Dialektik (Conference of the Ernst Bloch 
association on Polyphonic Dialectics, Berlin, 2007), in: 
Doris Zeilinger (ed.), VorSchein, Nuernberg, in press. 
(2008) 

30 In other words: It is the human mode of being to 
produce knowledge. Hence, for humans, ontology and 
epistemology fall into one. Higher and lower animals, in 
principle also plants, represent the same scheme, but on 
lower levels of organization. Essentially, even physical 
systems on a very fundamental level can be thought of as 
satisfying the general framework of this scheme, though 
by extremely simple means of organization. In the sense 
of Stuart Kauffman, the most fundamental physical 
(autonomous) agent can be defined by satisfying a 
minimal condition from thermodynamics: namely that the 
system is able to perform at least one thermodynamic 
work cycle. This is probably true for spin networks on the 
level of quantized physical space. Hence, evolution 
shows up as a multi-shifted hierarchy of complexity as to 
the unfolding of various forms of organized collectives of 
(autonomous) agents. Humans represent thus systems 
with (up to now) maximal degree of organization. In 
between we would expect a manifold of biological 
structures with different degrees of organization smaller 
than that degree in humans.  
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conceptual structure from which those social 
interactions of daily life can be reconstructed 

which are derived from the process of 
communication. System is the conceptual 
structure from which those joint manipulations 

of the material world can be reconstructed 
which are derived from the process of co-

operation. Obviously, the first and second pair 
of concepts from the two triadic structures 
regulate the actual flow of information and the 

interpretation of meaning while the third pair 
regulates the production of matter. This is a 

result of the fact that the complete system is 
more than space and network, because it 
does not only encompass social interactions, 

but also tangible matter.31 In a sense, space is 
the region in which the system unfolds its 

actions, while the network is skeleton of both 
space and system. Hence, this present paper 
can show clearly how humans construct their 

various spatial representations by means of 
editing the propositions of their theories. 

 


We shortly summarize now some 
elementary definitions and properties 
concerning mathematical categories32: A 
category C consists of 1) a collection of 

objects Ob(C) and 2) a set hom(x, y) of 
morphisms for each pair of objects x, y from x 

to y equipped with a) an identity morphism of 

the form 1x : x → x and b) a morphism f o g: x 

→ z for each pair of morphisms f: x → y, g: y 

→ z called composition such that (i) for each 

morphism f the left and right laws of identity 

are valid: 1x o f = f = f o 1y and (ii) for each 
triple of morphisms the law of associativity is 

valid: (f o g) o h = f o (g o h). In particular, an 
isomorphism is a morphism which has an 
inverse. Given categories C and D, a functor 

F: C → D  consists then of 1) a function F: 
                                                      
31 Of course, these two make no difference with 

respect to both the energy balance and the entropy 
balance. Matter belongs to the additional term which has 
to be added on the entropy’s side in order to make both 
balances equal, because it can be visualized as a kind of 
stored information (memory). 

32 We follow here the terminology and convention of 
John Baez put forward on his website when discussing 
categories [utilize the search function on this site]: 
http://math.ucr.edu/home/baez/. 

Ob(C) → Ob(D) and 2) a function F: hom(x, y) 

→ hom (F(x), F(y)) for each pair (x, y) ∈ 
Ob(C) such that a) F preserves identities: that 

is, for each object x ∈ Ob(C), F(1x) = 1F(x), and 
b) F preserves compositions: that is, for each 
pair of morphisms f, g in C we have: F(f o g) = 

F(f) o F(g). Given two functors F, G: C → D, 

then a natural transformation α: F  G 

consists of a function α which maps each 

object x ∈ C  to a morphism αx: F(x) → G(x) 

such that for each morphism f: x → y in C the 
following diagram commutes: 

 

F(x) →F(f) F(y) 

↓αx          ↓αy 

  G(x) →G(f) G(y) .   

 

It can be shown straightforwardly that 
identities, compositions and the law of 
associativity are being preserved for natural 
transformations. Given two functors, a natural 
isomorphism is a natural transformation which 

has an inverse. Insofar a natural 
transformation is a natural isomorphism iff (if 

and only if) for each object x ∈ C the 

morphism αx is invertible. A functor F: C → D 
is an equivalence, if it has a weak inverse, i.e. 

a functor  G: D → C such that there are 

natural isomorphisms α: FG  1C and β: GF 

 1D. 

A monoidal category (or monoid) consists 
of 1) a category M, 2) a functor called tensor 

product, of the form ⊗: M x M → M with ⊗(x, 

y) = x ⊗ y and ⊗(f, g) = f ⊗ g for objects x, y ∈ 
M and morphisms f, g in M, 3) an identity 

object 1 ∈ M, 4) natural isomorphisms called 

associators: ax,y,z: (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z) 

satisfying the left and right lwas of identity: lx: 

1 ⊗ x → x, rx: x ⊗ 1 → x, such that a) the 

following diagram commutes for all objects w, 

x, y, z ∈ M (Pentagon equation): 

 

(w ⊗ x) ⊗ (y ⊗ z) 

                   

((w ⊗ x) ⊗ y) ⊗ z               w ⊗ (x ⊗ (y ⊗ z)) 

                                     

(w ⊗ (x ⊗ y)) ⊗ z → w ⊗ ((x ⊗ y) ⊗ z) 
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and b) the triangle equations are valid, i.e. 
the following diagram commutes: 

 

(x ⊗ 1) ⊗ y → x ⊗ (1 ⊗ y) 

           

 x ⊗ y . 

 

(We skipped here the signifying of the 
respective associators on their arrows.) 

Important is the principle of duality: This 

means essentially the inversion of the 

directions of all arrows. Hence, for 

propositions of the type f: a → b, a = dom f, h 

= g o f the duals are the propositions f: b → a, 

a = cod f, h = f o g. The principle states then 

that if  the proposition Σ is a consequence of 
given axioms, then so is the dual proposition 

Σ*. Dual categories will be signified by an 
upper index „opp” (opposite). 

If for two categories C, D the respective 
hom(x, y) are sets, then we say that if there 

are also two functors F: C → D and G: D → C, 
category C is left-adjoint to D (or equivalently: 

G is right-adjoint to F (F↵G), if the functors 

HomD (F): Copp x D → Sets and HomC (G): 

Copp x D → Sets are mutually isomorphic. A 
terminal object 1 in a category C is an object 

which admits exactly one morphism from each 

object x of the form !: x → 1. An initial object 0 

is a terminal object in the category Copp. A 
quiver is a pair G = (A, V), where the elements 
of V are called vertices and the elements of A 

arrows. If each pair of vertices is at most top 

and bottom of one arrow, then the quiver is 
called directed graph. Obviously, the category 

of paths P(G) has the paths themselves as its 
morphisms. 

Given a quiver and a category C, and also 

a diagram ∆ from P(C). Given then an object c 

in C, there is the constant diagram [c], which 
associates with each vertex in C this very c 

and with each arrow the identity idc. A natural 

transformation [c] → ∆ is called cone on ∆, 

written as K(∆), while a natural transformation 

∆ → [c] is called co-cone on ∆, written as 

KK(∆). (In a cone all arrows which start from c 
have to commute with the arrows of the 

diagram. In a co-cone all arrows which end in 
c have to commute with the arrows of the 

diagram.) Then a limit of ∆ is a terminal object 

in K(∆). While a co-limit of ∆ is an initial object 

in KK(∆). If the diagram is a pair of the form f: 

a → c, g: b → c, then the limit is called fibre 
product or pullback of f, g. If the diagram is a 

pair of the form f: c → a, g: c → b, then the co-
limit is called fibre sum or pushout of f, g. In 
particular, a category is called finitely (co-) 

complete iff it has (co-) limits for all finite 

diagrams. 

For any category C the following 
propositions are equivalent: 1) C is finitely 

complete. 2) C has finite products and 
equalizers. (These are limits of pairs of 

arrows.) 3) C has a terminal object and 
pullbacks. Hence, the dual is also valid: 1) C 
is finitely co-complete. 2) C has finite sums 

and co-equalizers. 3) C has an initial object 
and pushouts. It is here where the subobject 

classifyer comes into play which serves as a 
categorial analogue for the characteristic 

functions of set theory. The direct way of 
defining this leads via sheaf theory: 

Be M a partially ordered set: A function 

which associates with each p∈M a set Xp and 

with each pair p ≤ q a mapping Xqp: Xq → Xp 

such that Xpp = id (Xp), and, whenever p ≤ q ≤ 
r, Xrp = Xqp o Xrq, is called pre-sheaf X on M. A 
subobject K then of the pre-sheaf X is 

essentially another pre-sheaf with a similar 
mapping, Kqp say, which is a restriction of Xqp. 

The collection of all pre-sheaves on a partially 
ordered set M is itself a category called SetM. 
(This can be shown to be a topos, because 

pre-sheaves can be alternatively defined in 
terms of sieves which are nothing but 

collections of morphisms acting on objects of 
M such that compositions are being 
preserved. The important property of sieves is 

that they imply the existence of subobject 
classifyers which have the structure of 

Heyting algebras.) We can also formulate that 

the category of functors Copp → Sets of a 
given category C is the category of pre-

sheaves of C. Given then for some category C 

a morphism f: H → G in the category of pre-
sheaves of C. Then we have: 1) It is f a 

monomorphism iff Af: AH → AG is injective for 
all objects A of C (the products meaning here 

“evaluation at A”). 2) It is f an epimorphism, if 
Af is surjective. 3) It is f an isomorphism, if Af 
is bijective, respectively. Then we have the 

following important definition: 
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Given a complete category C which has a 
terminal object 1, then a monomorphism true: 

1 → Ω in C is called subobject classifyer iff, 

given some monomorphism σ: S → X in C, 

there is a unique morphism τ: X → Ω such 
that the diagram 

 

S →σ X 

↓!      ↓τ 

1 →true Ω 

 

is a pullback. (Subobject classifyers are 
unique up to isomorphisms.) In this sense a 
subobject of X is an equivalence class of 

monomorphisms of type σ. If all subobjects of 
X represent a set for each object X in C, then 

this set is a pre-sheaf of C. A category is 
called cartesian closed iff it has finite products 

and each of its elements is exponentiable, i.e. 

if the functor AX: Sets → Sets: X → A x X has 
a right-adjoint. (This is particularly true for the 
category of sets called Sets. Then the 

respective functor is XA: Sets → Sets: X → XA. 
And the “power set” represents the functor X 

→ hom(A x X, X).) 

For a category C the following groups of 

properties are equivalent: 1) C is cartesian 
closed and has a subobject classifyer. 2) C is 
cartesian closed, finitely co-complete, and has 

a subobject classifyer. 3) C has a terminal 
object and pullbacks, exponentials, and a 

subobject classifyer. 4) C has a terminal 
object and pullbacks, an initial object and 
pushouts, exponentials, and a subobject 

classifyer. 5) C is finitely complete and has 
power objects. 

A category which has these equivalent 
groups of properties is called (elementary) 

topos. (In particular it can be shown that the 

category of pre-sheaves for some category C 

is a topos.) Functors between topoi that 
preserve limits, exponentials, and subobject 
classifyers are called logical morphisms. 

Take a site which a pair (C, J) with J a 

Grothendieck topology on C (in which 
sheaves take the role of open sets in terms of 
classical topology), then a pre-sheaf P in C is 
a sheaf iff for each sieve of J the canonical 

diagram is an equalizer. The category then 

which is equivalent to the category of sheaves 
Sh(C, J) is called Grothendieck topos. Note 

that a Grothendieck topos is an elementary 
topos. 

This is where logic enters again: We go 
back to the case of orderings. Then a pre-

order is a binary equivalence relation which is 

reflexive as well as transitive. It is called 
partial order, if it is also anti-symmetric (pRq, 

qRp  p = q). Instead of pRq we can 

alternatively write p⊆q such that a power set 

can be expressed by P = (P, ⊆). We call a 
power set which can be defined in terms of 

partial order a lattice. For any x,y∈P the 

products x ∩ y and x ∪ y are called meet and 
join, respectively. The first case is meant to be 

the greatest lower bound, the second the least 

upper bound of x and y in the sense of a 
subset filtering. A lattice is called bounded, if 

there is some y complementary to x such that 

x ∪y = 1 ∧ x∩y = 0. A bounded lattice is called 
complemented, if for each of its elements 

there is a complementary one within the 
lattice. A lattice is called distributive, if for 

each element there is at most one 

complementary element. In fact, the 

operations ∩ (meet), ∪ (join) and 

„complementarization“ represent in the case 
of the set of truth values 2 the operations 
conjunction, disjunction, and negation 

(including implication). Hence, we can rewrite 
algebraic expressions as logic expressions 

such that diagrams commute; e.g. for the 
case of negation we have: 

 

1 false → 2 

    ↓            ↓¬ 

1 true → 2 

 

When passing over from Boolean to 

intuitionistic logic, then we have to take into 
account that the former is governed by 
Boolean algebras and the latter by Heyting 

algebras. The important difference between 
these two is in the negation operation. In the 

Boolean case negation shows up as 
“complementarization”, similar to the case of 

duality: ¬(¬x) = x. In other words: The 

negation of the negation reproduces the 
proposition again. In the case of a Heyting 
algebra however, this is not true anymore. 

Instead, we have now: ¬(¬x) ≠ x. This means 
in particular that recursive operations make 



 



the emergence of innovative structures 
possible. Categories become time-dependent, 

contrary to sets, because objects can be 
created as well as annihilated. (Already in the 
calculus of propisitons can we find the 

consequences of this formal difference 
between the types of algebra.33) Basically, the 

calculus of propositions deals with the 

evaluation ε of propositions of a given set (as 
mapping from this set onto a lattice A) in 

terms of their validity: A proposition α in this 

sense is A-valid iff ε(α) = 1 („true“) under 

given rules. In the case of predicate logic the 

results of propositional calculus are being 
preserved (under appropriate generalizations 

and by introducing quantizing operators). We 

find that if  f: A → B is a morphism in the 

topos C, then the functor Sub(B) → Sub(A) of 

Heyting algebras has a right-adjoint ∀ as well 

as a left-adjoint ∃. (Obviously, Heyting 
algebras and thus intuitionistic logic is more 

generic for topos theory than Boolean 
classical logic.) 

There is an interesting hermeneutic side-
aspect to all of this: In the Lacanian 

terminology of negations the classical 
Aristotelian logic is being generalized in terms 
of a philosophical rather than mathematical 

discourse. For the classical tradition there is a 
total (absolute) truth pointing to the complete 

conformity of language and being which 
transcends the merely partial truth implied by 
the analytic discourse. For Aristotle, 

universality implies existence.34 For Lacan 
however there is an implicit „schismogenesis“ 

of writing and talking such that a 
generalization is necessary which takes this 
difference into account. For him, this results in 

an extension of the negation operations as 
indicated by the following schematic table: 

                                                      
33 We have discussed the more elementary aspects of 

logic, especially with a view to the classical form of 
propositional calculus, e.g. with respect to the modus 
ponens elsewhere. See e.g. in: Werner Loh, Ram A. Mall, 
Rainer E. Zimmermann: Interkulturelle Logik, Mentis, 
Paderborn, in print (2008), part 3. 

34 Alain Juranville: Lacan und die Philosophie. Boer, 
München, 1990 (PUF 1984), 397. 

 

∀x. f(x)      ∃x. f(¬x) 

 

∀x. f(x) ∃x. f(¬x) 

∀x. f(¬x) ∃x. f(x) 

¬∀x. f(x) ¬∃x. ¬f(x) 

 

Nothing comes to its determination except 

by means of difference (as Spinoza already 
knew), and the universal is not the universal 
of an essence. In fact, the potential of 

denotation is questioned in the process of 
signification. Lacan’s ré-écriture constitutes 

thus a new sort of scripture which 
represents/misrepresents the limits of the 
scripture of science. In a sense, Lacan 

generalizes the idea of Goedel’s by pointing to 
a beyond of scientific scripture. Hence, he 

introduces two qualified negations which 
replace the classical negation and add two 
new propositional forms to the table above: 

 

¬¬¬¬∀∀∀∀   discordant negation 
(denying/disclaiming negation) 

 ¬¬¬¬∃∃∃∃    rejecting negation . 

 

Hence, the field of science’s scripture is the 

world, but the truth of significants cannot be 
formulated under the form of knowledge. 

Knowledge means to signify what is part of 
the world. The sort of knowledge therefore 
which is expressed within the psycho-analytic 

discourse is instead of the type of the 
mathema which is the generalized form of the 

table above. For us here, this aspect is 
important with a view to the recent enterprises 
in theoretical physics as well as in music 

theory (and somewhere in between) to 
actually introduce a formal language which is 

capable of achieving a unified discourse with 
a logical nucleus and a hermeneutic halo for 
both syntax and semantics.35 

                                                      
35 We refer here to the cases mentioned earlier of 

ongoing research by Christopher Isham (London) et al. on 
the one hand and Guerino Mazzola et al. (Zuerich) on the 
other. 
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