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Abstract: The figure-ground division plays a fundamental role in all image perceptions. Although there are a lot of studies 
about extraction of a figure such as detection of edges or grouping of texture, there are few discussions about a relationship 
between obtained figure and ground. We focused on double image illusions having two complementary relationships be-
tween figure and ground and analyzed them. We divided the double image illusions according to two different interpretations 
and using these divisions we extracted and analyzed their logical structures by lattices derived from rough sets that we had 
developed. As a result we discovered unusual logical structures in double image illusions. 
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1. Introduction 

There are various double image illusions, Rubin’s vase (Rubin, 1915) being notorious. Double 
image illusions are said to be possible by the figure-ground perception, established by Gestalt psy-
chology (Koffka, 1935). Figure is the target of attention, and the ground is the background where 
the figure is contrasted. If the figure or ground status of an object changes, it is called a figure-
ground reversal. 
   The contrast between figure and ground becomes especially important when interpreting images. 
Today, interpretation of visual images is becoming more important due to human-computer inter-
face (Huang, 2008) and computer vision (Loss, 2009). Psychological theories are developed for 
understanding human visual interpretation mechanisms (Huang, 2007). 
   However, these studies are entirely focused on extraction of the figure such as detection of edg-
es or grouping of texture. The figure-ground relationship obtained in them has almost never been 
discussed before. We focused on the ambiguity of complementary relationship between figure and 
ground in double image illusions and analyzed it. 
   First, we consider the division of a figure image. A two-dimensional figure image is divided into 
groups by its attributes. In a figure image of a face, attributes are features of the figure image such 
as eye, mouth, nose, ear, …. When a two-dimensional figure image is divided into several parts, 
each of them is interpreted as an attribute. We call a mapping from the two dimensional figure to its 
attribute set as “an interpretation”. It is conceivable that two different interpretations are in double 
image illusions. We define a set of points that are mapped from the figure image to the same at-
tribute as an equivalent class. This equivalent class is obtained by an equivalent relationship de-
rived from each interpretation. So two different sets of equivalent class exist in double image illu-
sions.  

   To analyze such double-interpretations, we use rough set theory. A rough set is a concept of 
sets approximated by an equivalent relationship using two kinds of approximation (Pawlak, 1981, 
1982). Its definition is the following: Given a universal set U and an equivalent relationship R⊆
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U×U, an equivalent class is expressed as [x]R  ={y∈U|xRy} and for X⊆U the lower approximation 
of X is formally defined as R*(X)={x∈U|[x]R⊆X} and the upper approximation as R*(X)={x∈U|[x]R∩
X≠φ}. We can construct the logical structure (lattice) by collecting fixed points (X such that 
R*(X)=X, R*(X)=X) with these approximations. However, this method can extract only simple logical 
structures (Boolean lattices) that consist of a combination based on equivalent classes.  

We use a lattice driven by pseudo-closure fixed points that we constructed (Gunji & Haruna, 
2010). This is a collection of fixed points derived from a double approximation based on two differ-
ent equivalent relationships (S, R). The formed lattice will not necessarily be a simple logical struc-
ture as mentioned above, since some of the information is lost due to mismatches of the different 
interpretations. Actually, it is proved that not only Boolean lattices but also arbitrary lattices can be 
created.  

Using this rough set derived lattice we analyzed an ambiguity of the figure-ground relationship in 
double image illusions.  

2. Methods 

2.1. Equivalent Relationship and Indiscernibility 

Rough set theory is founded on the idea that the elements in a set are indistinguishable. The indis-
tinguishable elements have an equivalent relationship and belong to the same equivalent class. Let 
x, y∈U be elements of a universal set U and f be a transformation function. If f(x)=f(y), then x and y 
have an equivalent relationship. Express the equivalent relationship as R. Then equivalent class is 
expressed as [x]R={y∈U|xRy}. Thus the lower approximation of X is formally defined as R*(X)={x∈
U|[x]R⊆X} and the upper approximation as R*(X)={x∈U|[x]R∩X≠φ}. 

2.2. Galois Connection and Lattice 

In a theory of partially ordered set, Galois connection leads to a complete lattice. Given two par-
tially ordered sets P and Q, a pair of maps (F, G) with F:PQ and G:QP is called a Galois con-
nection, if F(x)≦y ⇔ x≦G(y) for any x∈P and y∈Q. A closure operator C:=FG:PP can be con-
structed from a Galois connection such that, for any x, y∈P, (i) x≦C(x); (ii) x≦y⇒C(x)≦C(y); (iii) 
CC(x)=C(x). It means that closure operator is good and natural operator to take a stable structure 
in a partially ordered set with respect to F and G. Overall it results in a (complete) lattice LT={x∈
P|C(x)=x}. 

In the context of a rough set, given a universal set U, R*:P(U)P(U) and R*:P(U)P(U) consti-
tute a Galois connection. Actually, for any X, Y⊆U,  R*(X)≦Y⇔X≦R*(Y). Thus C=R*R* is defined 
as a closure operator and LC={X∈U|C(X)=X} is a complete lattice. This lattice, however is too trivial 
to observe the structure, since it is destined to be a set lattice, thus for any A∈LC, complement of A 
is defined as Ac=U-A. 

If two kinds of binary relationships R and S are on a universal set U, and two kinds of operations 
S* and R* (or S* and R*), a pair of operations do not constitute a Galois connection. Indeed, if an 
operator T=R*S* is introduced, T is not a closure operator since it satisfies only (ii) X⊆Y⇒T(X)⊆
T(Y) and (iii) TT(X)=T(X) for X, Y⊆U. We call this operator pseudo-closure. If fixed points with re-
spect to pseudo-closure are collected by LT={X∈U|T(X)=X}, LT is a lattice but not a set lattice. In-
versely, it can be verified that any lattice is expressed in the form of LT by determining adequate 
equivalent relationships S and R. It gives suitable results, reflecting the two different interpretations 
of illusionary images. 
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2.3. Constructing a Lattice 

Lattice is an algebraic structure where any two elements of a partially ordered set have a unique 
least upper bound (join) and a greatest lower bound (meet) (Birkhoff, 1967; Davey & Priestley, 
2002). As mentioned before, given two kinds of equivalent relationship R and S on a universal set 
U, we can construct a lattice by <LT; ⊆> with LT={X⊆U|T(X)=X}, T= R*S*.  Actually, an element of 
LT is a subset of the universal set, and order is defined by inclusion ⊆. If all subsets of U are col-
lected, LT is a power set, and is a set lattice in which join and meet are defined by union ∪ and 
intersection ∩, respectively. In general, LT≠P(U), thus join and meet are defined by the following: 
for any X, Y∈LT, X∧Y=T(X∩Y), X∨Y=T(X∪Y). It can be verified that LT, is closed with respect to 
∨ and ∧, and that LT is a lattice. We call LT ={X∈U|T(X)=X}, with T= R*S*. 

When we construct a lattice of fixed points from one equivalent relationship, R*(R*(X))=X, we 
only get a set lattice. A set lattice has two important properties in lattice theory such as distributiv-
ity, A∧(B∨C)=(A∧B)∨(A∧C) for A, B, C⊆U, and complementarity of which for any X⊆U, there 
exists Y⊆U such that X∨Y=U, X∧Y=φ. Note that U and φ are the greatest and least element in 
the lattice LT. A distributive complemented lattice is called a Boolean lattice. However, when we 
construct a lattice of fixed points from two equivalent relationships, R*(S*(X))=X, the resulting lattice 
can be either a Boolean lattice or a non-Boolean lattice. This is a result of two equivalent classes 
fully or partially overlapping each other. The differences between Boolean and non-Boolean lattices 
are mentioned in the next section. Difference between a lattice of LC={X⊆U|C(X)=X} and  LT ={X⊆
U|T(X)=X} with C=R*R*, T=R*S* is illustrated in Fig. 1. In the case of LC, when we denote 
W=U/R={[a]R, [c]R, [d]R}={{a, b}, {c}, {d, e}}, LC=P(W), where all possible combinations of equivalent 
class of R are obtained (Fig. 1 (a)). By contrast, in LT, although elements of LT are possible unions 
of equivalent class R, some elements are missing (Fig. 1 (b)). Actually, R*S*({a, b, c})=R*([a]S∪
[b]S)=R*({a, b, c, d})=[a]R∪[c]R=    {a, b, c}. Thus {a, b, c} is an element of LT, on one hand. On the 
other hand, since R*S*({a, b, d, e})=R*([a]S∪[b]S∪[e]S)=R*(U)=U≠{a, b, d, e}, hence {a, b, d, e} is 
missing in LT. Due to the loss of information, an obtained lattice can be constructed as a non-
Boolean lattice. 
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                                       (a)                                                                           (b)  

Figure 1: (a) Only Boolean lattices result when using fixed points from a single equivalent relation-
ship. (b) Boolean as well as non-Boolean lattices result when using fixed points from double equiv-
alent relationship. The lattice shown here is a non-Boolean lattice. Elements {a, b}, {d, e}, and {a, b, 

d, e} from (a) are missing in (b). 

To construct a rough set derived lattice from two equivalent relationships, we need two interpreta-
tions, R and S. Each fixed point X considered is an equivalent class, for example {a, b} or {c} or {d, 
e} in Fig. 1 (b) for the interpretation R. Treating each equivalent class as a unit, we consider its 
power set: φ, {a, b}, {c}, {d, e}, {a, b, c}, {c, d, e}, {a, b, d, e}, and U={a, b, c, d, e}. Each equivalent 
class and its power set composition are used as an X, and operators S* and R* are applied in this 
order. When applying S* to the X of the interpretation group R, one must take the upper approxima-
tion of X in terms of interpretation S since we are applying S*. For example, take {c} of interpreta-
tion R and apply S*. We get S*(X)={b, c, d}. Next, apply R* to S*(X). R*({b, c, d}) is {c} in interpreta-
tion R, since only the equivalent class {c} is included completely within the elements {b, c, d}. We 
started with X={c} and we get R*S*(X)={c}. Therefore, the equivalent class {c} is considered a fixed 
point. If we take {a, b} in terms of interpretation R and apply S* and follow the same procedure, we 
get R*S*(X)={a, b, c}. Therefore, the equivalent class {a, b} is not a fixed point. Repeat this process 
for all element sets in the power set, from φ to U. The empty set φ and the universal set U will 
always be a fixed point. Then collect the fixed points and use them as elements to build a lattice 
based on its inclusion relationships, with the universal set at the top and the empty set φ at the 
bottom. 

2.4. Relation Table 

The relationship between the two equivalent relationships R and S is expressed by using a relation 
table shown in Table 1. We use such tables to organize the information and to find fixed points to 
construct rough set derived lattices as explained in the previous procedure section (2.4). The ex-
ample we show here uses the two equivalent relationships R and S in Fig. 1 (b). Table 1 shows the 
relationship between the elements of the equivalent relationships R and S. 1’s denote the presence 



514 Kohei Sonoda, Eugene S. Kitamura, Iori Tani, Tomohiro Shirakawa, & Yukio-Pegio Gunji 

CC: Creative Commons License, 2011. 

of a relationship and 0’s denote the lack of a relationship. In subsequent sections, we will refer to 
such relation tables. 
 

 

 

 

 

 

Table 1. A relation table showing the relationships between R and S according to the elements 

3. Procedures 

3.1. Experiment 

Six different double image illusions were used as samples (Fig.2). Double image illusions were 
printed on A4 papers in monochrome. The randomly ordered samples were provided to the sub-
jects for the task. Thirty-one individuals participated in the experiment. The subjects were healthy 
individuals in their 20s and 30s. The experiment room was approximately 20 degree C and other 
conditions such as lighting were kept constant. When marking the sheet, the subject was allowed 
to turn it or move it freely as long as it stayed flush to the plane of the table. The color of the ink 
was pink and the line diameter was 5mm.  
  The task of the experiment was to mark six attributes of a double image illusion. We instructed a 
subject to view the image as one of the two interpretations of the double image illusion. Before 
starting with the task, the subjects were checked whether or not they recognized the instructed 
interpretation. If they did not recognize it, we explained it without pointing to any parts or attributes. 
In a case where the subject recognized the image, the task was started. If this was not the case, 
the task for this image and a task according to another interpretation of the double image illusion 
were skipped. An attribute of an image may be an eye, nose, ear, neck, shoulder, or any aspect of 
an image that the subject especially noticed. These attributes were enclosed with a marker. The 
shape and size of the enclosure were arbitrary. However, lines of two different enclosures could not 
touch. The order of the six images and either of the two interpretations were randomly determined. 
The two interpretations were marked consecutively on different sheets of paper.  
   After the experiment, the two sheets from the two interpretations were compared for overlap in 
the attribute enclosures (Fig.3). When they overlapped, they were considered to have a relation-
ship. An intersection of lines is not counted as an overlap and we considered only an intersection of 
inner portion of the enclosures. An enclosure on one interpretation may have more than one attrib-
ute overlap with the other interpretation. With these relationships, a relation table was made as in 
Table 1 and 2. The procedure (section 2.4) was followed to construct a lattice. 
 

 

S  
a b c d e 

a 1 1 1 1 0 
b 0 0 0 0 0 
c 0 0 1 1 0 
d 0 0 0 1 1 

R 

e 0 1 1 1 1 
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           (a)                   (b)                     (c)                            (d)                       (e)                      (f) 

Figure. 2: Images used for the experiment: (a) young lady vs. old lady, (b) duck vs. rabbit, (c) in-
digenous tribe member vs. Inuit, (d) bald man vs. mouse, (e) lady vs. saxophone player, (f) front 

view of a man’s face vs. side view of a witch’s face (by Yuya Maekawa 2008). 

 

                                          (a)                                                                   (b) 

Figure 3: divisions of duck (a) and of rabbit (b). 

 

 

 

 

 

 

 

Table 2: The relation table of duck vs. rabbit of Fig.3.

3.2. Control 

As a control for the experiment, we created two sets of equivalent classes by Monte Carlo method 
and a rough set derived lattice by overlapping them. The number of trials was 100,000 and that of 
equivalent classes was six. We used a grid of 100×100 and followed the algorithm below. 
 
• Step 1 Assign 0 to all cells in the grid (initialization). 
• Step 2 Assign values from 1 to 6 to randomly chosen cells. These are starting points of the 

equivalent classes. 

S  
a b c d e f 

a 1 0 0 0 0 0 
b 1 0 0 0 0 0 
c 1 1 0 0 0 0 
d 0 0 1 0 0 0 
e 0 0 0 1 1 0 

R 

f 0 0 0 0 0 1 
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• Step 3 Choose the number of maximum iteration (maximum growth) randomly between 1 to 100 
and repeat the following step as many times as the maximum iteration. 

• Step 4 Cells are processed from (0, 0) to (99, 99) in the x-direction first. If the cell (x, y) has a 
value other than 0, choose a cell randomly from (x+1, y), (x-1, y), (x, y+1), (x, y-1). If the ran-
domly chosen new cell has a value 0, assign the same number as (x, y). 

3.3. Analysis 

For analyzing the derived lattices, we defined a figure and a ground by a complementary relation-
ship. In other words an equivalent class a has the figure-ground relationship with b when they sat-
isfy a∨b =1 and a∧b =0. As a simple example, we consider Rubin’s vase. When a= ”vase” is the 
figure and b= “ two faces” is the ground, it can be said that a and b together express the whole 
image (Rubin’s vase). Therefore, by investigating complementary relationships, we can analyze the 
logical structures (the derived lattices) in terms of the figure-ground relationship.  

Furthermore we introduce non-distributivity (ND) and complementarity (C) as barometers for the 
analysis. This is because an equivalent class may have more than one complement. We define ND 
by complement possession rate and C by complement existence rate. ND does not count an ele-
ment that has no complements. So we get ND>=1.0. From this definition, if the derived lattice is a 
distributive one, then we get ND=1.0 (one-to-one complementary relationship). If it is a comple-
mentary one, then we get C=1.0 (all elements have some complements). Therefore this definition 
is consistent with lattice theory. However, a distributive lattice doesn’t necessarily imply ND=1.0. 
Yet less than one percent of all lattices satisfied ND=1.0 and were distributive in the experiment. 
On the other hand, a complementary lattice and C=1.0 are equivalent. Thus, we can say that this 
definition is effective.  

For example, we consider a lattice {φ, a, b, ab}. Complementary pairs areφ- ab and a - b. So 
we get ND=1.0 since each element has only one complement and C=1.0 since each element has a 
complement. In fact, this is a Boolean lattice since C=1.0 and ND=1.0. For the next example, we 
consider a lattice {φ, a, b, c, abc}. Complementary pairs areφ- abc, a - b, b - c, and c - a. Obvi-
ously C=1.0. But this differs from the previous example in that ND>1.0 since some elements have 
more than one complement. In other words, ND=8/5=1.6 since complementary pairs are 8 (φ - 
abc, a - b, a - c, b - a, b - c, c - a, c - b, and abc –φ) and the number of elements with complements 
are 5 (φ, a, b, c, and abc). So, this is not a distributive lattice but a complementary one since 
C=1.0. 

4. Results 

We must be careful about the size of the obtained lattices when we analyze their non-distributivity 
and complementarity. The number of elements determines the size of a lattice. If it is small, the 
possibility of an element’s being a complement or complementarity will drop to a lower value and 
complementary relationships will be one-to-one. In other words, the smaller the size of lattices, the 
greater the chance of increasing its non-distributivity. So we must restrict the size of the lattices. 
    For simplicity, we define the size of the lattice by “relation size” (i.e., the number of rows with 
values other than 0 times the number of columns with values other than 0). For example, the rela-
tion size of unit matrix with 6 degrees is 36 (= 6×6). In the experiment and the control, the value of 
the relation size will be between 0 and 36 since the number of equivalent classes is 6. In this paper 
we limited the relation size to more than 30. In other words, the relation size will be 30 or 36 and 
relation table composition will be 5×6, 6×5, or 6×6. 
    The number of samples that satisfy the condition of the relation size was 119 in the experiment 
and 92,697 in the control. We calculated C and ND of these samples and made a comparison be-
tween the experiment and the control by using the relative frequency distribution of these values 
(Fig3). 
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In the control, both C and ND were distributed widely (Fig3.a). In the experiment, C was distributed 
widely and ND was distributed near 1.0 (Fig3.b). Concerning C, the average was 0.6578 and the 
variance was 0.06978 in the control, and the average was 0.7757 and the variance was 0.05367 in 
the experiment. Concerning ND, the average was 1.331 and the variance was 0.1391 in the con-
trol, and the average was 1.055 and the variance was 0.03063 in the experiment. In Student’s t-
test, the comparison showed significant differences in both C and ND at 1 percent (t-value was 
4.830 at C and 8.074 at ND). 
    Non-distributivity of the experiment was remarkable. The average was 1.055 and 80.67 percent 
for all those that satisfied ND=1.0 (79.83 percent were distributive lattices). In the control, the aver-
age was 1.331 and 29.94 percent of all satisfied ND=1.0. Results showed that logical structures of 
double image illusions were more distributive than that of the control. 

 

(a)                                                                     (b) 

Figure 4: (a) Control (b) Experiment. The heights of the relative frequency distribution contour lines 
are 0.0002 (purple), 0.002 (blue), 0.02 (green). 

5. Discussion 

The figure and the ground are respectively the region emerging as a shape and the region per-
ceived as its background.  It is said that a figure image is divided into the figure and the ground 
when the figure recognition is realized. For example, we consider Rubin’s vase. It can be said that 
the figure-ground division corresponds to one type of recognition though the figure-ground reversal 
may emerge. “Vase” becomes the figure and the other parts (“two faces”) become the ground when 
it is perceived and vice versa. 

It is true about not only the shape of the figure images but also each division of them. For exam-
ple, we consider the divisions of a face figure. Let the divisions be {eyes, nose, mouth, ear, chin, 
hair}. When {eyes} is attended, it becomes the figure and {nose, mouth, ear, chin, hair} becomes 
the ground. Or, when {nose, mouth} is the figure, {eye, ear, chin, hair} becomes the ground. In oth-
er words, when the shapes or the divisions of the figure are recognized, the figure and the ground 
are completely divided. At this time, the figure corresponding to the recognition decides the ground. 
So, when the recognition, namely, the figure-ground division is realized, the figure-ground relation-
ship is one-to-one. 

In this paper, the figure-ground relationship is defined by the complementary one. However, the 
complementary relationship is not always one-to-one. Especially, it becomes one-to-many when its 
logical structure is not a distributive lattice. This means that the figure-ground relationship is not 
one-to-one, namely, the figure-ground division is not realized. Otherwise, when the logical structure 
is a distributive lattice, the complementary relationship, namely, the figure-ground relationship is 
one-to-one. At this time, the figure-ground division is realized. 
    From the experimental result, the possibility of obtaining a distributive lattice for the logical struc-
tures of double image illusions is very high. But the possibility of a distributive lattice is low for the 
control. Thus, it can be thought that the logical structures of double image illusions realize the fig-
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ure-ground division and this is not seen in the control. Though both have two different interpreta-
tions, it can be thought that only double image illusions have special logical structures realizing the 
figure-ground division, namely, distributive lattices. 

Then, what is the origin of distributive lattices? It comes from ambiguity itself. Ambiguity has 
meaning in both two different interpretations and cannot be ignored. If you cover ambiguity points 
by equivalent classes derived from both interpretations, you cannot avoid including the relation-
ships among equivalent classes. For example, let us see “young lady vs. old lady” as the double 
image illusion.  Let there be two equivalent classes such as {{eyes}, {nose}} in “young lady” inter-
pretation. Then consider how to cover these two ambiguous points in “old lady”. We may cover 
them by one equivalent class such as {right eye}. Or, we can cover them by a bigger equivalent 
class such as {both eyes}.  In either case, through these ambiguous points, the including relation-
ships such as {eye}, {nose} ⊆ {right eye} or {eye}, {nose} ⊆ {both eyes} are formed between 
equivalent classes derived from two interpretations. Of course, it can be possible that equivalent 
classes from one interpretation include that from another and vice versa. When all equivalent clas-
ses in both interpretations are in some including relationships, their logical structure becomes a 
Boolean lattice. If some parts deviate from that case, divisions of double image illusions will be 
separated into regions with including relationships and regions with entanglements. Non-
distributivity comes from these entangled regions that form non-distributive lattices (N5 or M3) as 
sub-lattices. But, the possibility to generate non-distributive lattices is generally small since the sub-
lattices have small logical structures (relation size). 

Thus, if there are some regions with partial including relationships in double image illusions, the 
possibility for their logical structures to become distributive lattices is very high. It can be said that 
ambiguity generates distributive lattices as a logical structure. Of course, this cannot be seen in the 
control since it has randomness and doesn’t have such ambiguity.  
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